29 research outputs found

    On the Merging Cluster Abell 578 and Its Central Radio Galaxy 4C +67.13

    Full text link
    Here we analyze radio, optical, and X-ray data for a peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy, CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation \sim10 kpc, the brighter of which hosts the radio source 4C +67.13. The Fanaroff-Riley type-II radio morphology of 4C +67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio 104\sim10^{-4} (for the estimated black hole masses of 3×108M\sim 3 \times 10^8\,M_\odot and 109M\sim 10^9 \, M_\odot). The gathered X-ray ({\it Chandra}) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (60\sim 60\,kpc projected) between the position of the brightest cluster galaxy and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C\,+67.13 is compressed (by a factor of about 1.4\sim 1.4) and heated (from 2.0\simeq 2.0\,keV up to 2.7\,keV), consistent with the presence of a weak shock (Mach number 1.3\sim 1.3) driven by the expanding jet cocoon. This would then require the jet kinetic power of the order of 1045\sim 10^{45}\,erg\,s1^{-1}, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system.Comment: 12 pages, 11 figures, accepted for publication in Ap

    On the Interaction of the PKS B1358-113 Radio Galaxy with the Abell 1836 Cluster

    Full text link
    [abridged] Here we present the analysis of multifrequency data gathered for the FRII radio galaxy PKS B1358-113, hosted in the brightest cluster galaxy of Abell 1836. The galaxy harbors one of the most massive black holes known to date and our analysis of the optical data reveals that this black hole is only weakly active. Based on new Chandra and XMM-Newton X-ray observations and archival radio data we derive the preferred range for the jet kinetic luminosity (0.53)×1045\sim (0.5-3) \times 10^{45} erg s1^{-1}. This is above the values implied by various scaling relations proposed for radio sources in galaxy clusters, being instead very close to the maximum jet power allowed for the given accretion rate. We constrain the radio source lifetime as 4070\sim 40-70 Myrs, and the total amount of deposited jet energy (28)×1060\sim (2-8) \times 10^{60}\,ergs. The detailed analysis of the X-ray data provides indication for the presence of a bow-shock driven by the expanding radio lobes into the Abell 1836 cluster environment, with the corresponding Mach number 24\sim 2-4. This, together with the recently growing evidence that powerful FRII radio galaxies may not be uncommon in the centers of clusters at higher redshifts, supports the idea that jet-induced shock heating may indeed play an important role in shaping the properties of clusters, galaxy groups, and galaxies in formation. We speculate on a possible bias against detecting jet-driven shocks in poorer environments, resulting from an inefficient electron heating at the shock front, combined with a relatively long electron-ion equilibration timescale.Comment: Version accepted to Ap

    Mid-Infrared Diagnostics of the Circumnuclear Environments of the Youngest Radio Galaxies

    Full text link
    We present a systematic analysis of the mid-infrared (MIR) properties of the youngest radio galaxies, based on low-resolution data provided by the {\it WISE} and {\it IRAS} satellites. We restrict our analysis to sources with available X-ray data that constitute the earliest phase of radio galaxy evolution, i.e. those classified as Gigahertz Peaked Spectrum (GPS) and/or Compact Symmetric Objects (CSOs). In our sample of 29 objects, we find that the host galaxies are predominantly red/yellow ellipticals, with some of them displaying distorted morphology. We find a variety of MIR colors, and observe that the sources in which the MIR emission is dominated by the ISM component uniformly populate the region occupied by galaxies with a wide range of pronounced (0.5M\geq 0.5 M_{\odot}\,yr1^{-1}) star formation activity. We compare the MIR color distribution in our sample to that in the general population of local AGN, in the population of evolved FR\,II radio galaxies, and also in the population of radio galaxies with recurrent jet activity. We conclude that the triggering of radio jets in AGN does not differentiate between elliptical hosts with substantially different fractions of young stars; instead there is a relationship between the jet duty cycle and the ongoing star formation. The distribution of the sub-sample of our sources with z<0.4z<0.4 on the low-resolution MIR vs. absorption-corrected X-ray luminosity plane is consistent with the distribution of a sample of local AGN. Finally, we comment on the star formation rates of the two γ\gamma-ray detected sources in our sample, 1146+596 \& 1718--649.Comment: Revised version, accepted by the Astrophysical Journa

    Period changes of the sample of eclipsing binaries with active chromospheres

    No full text
    In this work we present results derived from analysis of the O-C behaviour of ten eclipsing binary systems: AR Lac, CG Cyg, HP Aur, MM Her, RS CVn, RT And, SV Cam, V471 Tau, WW Dra and CF Tuc. It was proved on the basis of moments of minima compiled from the literature and new ones determined from recent observations, that these binaries show long term (19-91 years) modulations of their orbital periods, clearly visible in their OC diagrams. Two possible explanations for this effect are considered: (1) the light-travel time effect due to the presence of a third body orbiting the eclipsing systems; (2) the Applegate mechanism predicting period modulation by changes in the distribution of angular momentum as a star goes through its activity cycles. It was found that in the case of four systems the existence of a third star, orbiting the binary, is a more plausible explanation of observations

    Signatures of the disk-jet coupling in the Broad-line Radio Quasar 4C+74.26

    Full text link
    Here we explore the disk-jet connection in the broad-line radio quasar 4C+74.26, utilizing the results of the multiwavelength monitoring of the source. The target is unique in that its radiative output at radio wavelengths is dominated by a moderately-beamed nuclear jet, at optical frequencies by the accretion disk, and in the hard X-ray range by the disk corona. Our analysis reveals a correlation (local and global significance of 96\% and 98\%, respectively) between the optical and radio bands, with the disk lagging behind the jet by 250±42250 \pm 42 days. We discuss the possible explanation for this, speculating that the observed disk and the jet flux changes are generated by magnetic fluctuations originating within the innermost parts of a truncated disk, and that the lag is related to a delayed radiative response of the disk when compared with the propagation timescale of magnetic perturbations along relativistic outflow. This scenario is supported by the re-analysis of the NuSTAR data, modelled in terms of a relativistic reflection from the disk illuminated by the coronal emission, which returns the inner disk radius Rin/RISCO=3516+40R_{\rm in}/R_{\rm ISCO} =35^{+40}_{-16}. We discuss the global energetics in the system, arguing that while the accretion proceeds at the Eddington rate, with the accretion-related bolometric luminosity Lbol9×1046L_{\rm bol} \sim 9 \times 10^{46} erg s1^{-1} 0.2LEdd\sim 0.2 L_{\rm Edd}, the jet total kinetic energy Lj4×1044L_\textrm{j} \sim 4 \times 10^{44} erg s1^{-1}, inferred from the dynamical modelling of the giant radio lobes in the source, constitutes only a small fraction of the available accretion power.Comment: 9 pages and 6 figures, ApJ accepte

    Precursor flares in OJ 287

    Full text link
    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending towards the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z_c = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.Comment: to appear in the Astrophysical Journa

    Pulsational Mapping of Calcium Across the Surface of a White Dwarf

    Get PDF
    We constrain the distribution of calcium across the surface of the white dwarf star G29-38 by combining time series spectroscopy from Gemini-North with global time series photometry from the Whole Earth Telescope. G29-38 is actively accreting metals from a known debris disk. Since the metals sink significantly faster than they mix across the surface, any inhomogeneity in the accretion process will appear as an inhomogeneity of the metals on the surface of the star. We measure the flux amplitudes and the calcium equivalent width amplitudes for two large pulsations excited on G29-38 in 2008. The ratio of these amplitudes best fits a model for polar accretion of calcium and rules out equatorial accretion.Comment: Accepted to the Astrophysical Journal. 16 pages, 10 figures
    corecore